Using Profile Likelihood for Semiparametric Model Selection with Application to Proportional Hazards Mixed Models
نویسندگان
چکیده
We consider selection of nested and non-nested semiparametric models. Using profile likelihood we can define both a likelihood ratio statistic and an Akaike information for models with nuisance parameters. Asymptotic quadratic expansion of the log profile likelihood allows derivation of the asymptotic null distribution of the likelihood ratio statistic including the boundary cases, as well as unbiased estimation of the Akaike information by an Akaike information criterion. Our work was motivated by the proportional hazards mixed effects model (PHMM), which incorporates general random effects of arbitrary covariates and includes the frailty model as a special case. The asymptotic properties of its parameter estimate has recently been established, which enables the quadratic expansion of the log profile likelihood. For computation of the (profile) likelihood under PHMM we apply three algorithms: Laplace approximation, reciprocal importance sampling, and bridge sampling. We compare the three algorithms under different data structures, and apply the methods to a multi-center lung cancer clinical trial.
منابع مشابه
Semiparametric analysis of transformation models with censored data
A unified estimation procedure is proposed for the analysis of censored data using linear transformation models, which include the proportional hazards model and the proportional odds model as special cases. This procedure is easily implemented numerically and its validity does not rely on the assumption of independence between the covariates and the censoring variable. The estimator is the sam...
متن کاملSemiparametric Maximum Likelihood Inference for Truncated or Biased-sampling Data
Sample selection bias has long been recognized in many fields including clinical trials, epidemiology studies, genome-wide association studies, and wildlife management. This paper investigates the maximum likelihood estimation for censored survival data with selection bias under the Cox regression models where the selection process is modeled parametrically. A novel expectation-maximization alg...
متن کاملModel Selection for Semiparametric Bayesian Models with Application to Overdispersion
In analyzing complicated data, we are often unwilling or not confident to impose a parametric model for the data-generating structure. One important example is data analysis for proportional or count data with overdispersion. The obvious advantage of assuming full parametric models is that one can resort to likelihood analyses, for instance, to use AIC or BIC to choose the most appropriate regr...
متن کاملA unified framework for fitting Bayesian semiparametric models to arbitrarily censored survival data, including spatially-referenced data
A comprehensive, unified approach to modeling arbitrarily censored spatial survival data is presented for the three most commonly-used semiparametric models: proportional hazards, proportional odds, and accelerated failure time. Unlike many other approaches, all manner of censored survival times are simultaneously accommodated including uncensored, interval censored, current-status, left and ri...
متن کاملInterval mapping of quantitative trait loci for time-to-event data with the proportional hazards mixture cure model.
Interval mapping using normal mixture models has been an important tool for analyzing quantitative traits in experimental organisms. When the primary phenotype is time-to-event, it is natural to use survival models such as Cox's proportional hazards model instead of normal mixtures to model the phenotype distribution. An extra challenge for modeling time-to-event data is that the underlying pop...
متن کامل